International Journal of Trichology International Journal of Trichology
 Print this page Email this page Small font sizeDefault font sizeIncrease font size
 
 
  Home | About IJT | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Online submission | Subscribe | Advertise | Contact us | Login   
 
ORIGINAL ARTICLE
Year : 2015  |  Volume : 7  |  Issue : 3  |  Page : 95-99

Involvement of mechanical stress in androgenetic alopecia


Department of Physiotherapy and Biomechanics, Physical Therapy Centre Rafael Tellez, Almería, Spain

Correspondence Address:
Rafael Tellez-Segura
C/Antonio Cano, 87 04009 Almeria
Spain
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-7753.167468

Rights and Permissions

Context: Androgenetic alopecia (AGA) is a frequent disorder characterized by progressive hair miniaturization in a very similar pattern among all affected men. The pathogenesis is related to androgen-inducible overexpression of transforming growth factor β-1 from balding dermal papilla cells, which is involved in epithelial inhibition and perifollicular fibrosis. Recent research shows that hair follicle androgen sensitivity is regulated by Hic-5, an androgen receptor co-activator which may be activated by the mechanical stimulation. Moreover, the dermis of scalp susceptible to be affected by AGA is firmly bounded to the galea aponeurotica, so the physical force exerted by the occipitofrontalis muscle is transmitted to the scalp skin.Aims: To know whether mechanical stress supported by hair follicles is involved in AGA phenomenon.Materials and Methods: It is performed with a finite element analysis of a galea model and a schematic representation of AGA progression according to Hamilton–Norwood scale in order to establish the correlation between elastic deformation in scalp and clinical progression of male pattern baldness.Results: The result was a highly significant correlation (r: −0.885, P < 0.001) that clearly identifies a mechanical factor in AGA development.Conclusions: All these data suggest that mechanical stress determines AGA patterning and a stretch-induced and androgen-mediated mechanotransduction in dermal papilla cells could be the primary mechanism in AGA pathogenesis.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3800    
    Printed62    
    Emailed0    
    PDF Downloaded73    
    Comments [Add]    

Recommend this journal